Search results for " reduced sets of variables"
showing 3 items of 3 documents
On the checking of g-coherence of conditional probability bounds
2003
We illustrate an approach to uncertain knowledge based on lower conditional probability bounds. We exploit the coherence principle of de Finetti and a related notion of generalized coherence (g-coherence), which is equivalent to the "avoiding uniform loss" property introduced by Walley for lower and upper probabilities. Based on the additive structure of random gains, we define suitable notions of non relevant gains and of basic sets of variables. Exploiting them, the linear systems in our algorithms can work with reduced sets of variables and/or constraints. In this paper, we illustrate the notions of non relevant gain and of basic set by examining several cases of imprecise assessments d…
Computational aspects in checking of coherence and propagation of conditional probability bounds
2000
In this paper we consider the problem of reducing the computational difficulties in g-coherence checking and propagation of imprecise conditional probability assessments. We review some theoretical results related with the linear structure of the random gain in the betting criterion. Then, we propose a modi ed version of two existing algorithms, used for g-coherence checking and propagation, which are based on linear systems with a reduced number of unknowns. The reduction in the number of unknowns is obtained by an iterative algorithm. Finally, to illustrate our procedure we give some applications.
Algorithms for coherence checking and propagation of conditional probability bounds
2001
In this paper, we propose some algorithms for the checking of generalized coherence (g-coherence) and for the extension of imprecise conditional probability assessments. Our concept of g-coherence is a generalization of de Finetti’s coherence principle and is equivalent to the ”avoiding uniform loss” property for lower and upper probabilities (a la Walley). By our algorithms we can check the g-coherence of a given imprecise assessment and we can correct it in order to obtain the associated coherent assessment (in the sense of Walley and Williams). Exploiting some properties of the random gain we show how, in the linear systems involved in our algorithms, we can work with a reduced set of va…